Novel Approaches for Speciation of Platinum and Vanadium in Mobile Source Emissions

Martin Shafer¹, James Schauer¹, Water Copan², Alberto Ayala³, Shaohua Hu³, Jorn Herner³

¹University of Wisconsin-Madison Environmental Chemistry & Technology ²Clean Diesel Technologies Inc. ³California Air Resources Board

AAAR 27TH Annual Conference

Motivation

- Controlling emissions from mobile sources are critical for continued reduction in health impacts of air pollution, and for addressing regional and global climate impacts.
- Most current and proposed emission control strategies for diesel and gasoline engines employ metal catalysts to reduce tailpipe emissions of regulated species.
- Gasoline Three-Way-Catalysts (Pt, Pd, Rh)
- Diesel Fuel Based Catalysts (Pt-FBC)
- Diesel Particulate Filters (Pt-Catalyzed)
- Diesel Selective Catalytic Reactors (V-SCR)
- The use of these metals raises concerns about potential environmental contamination and the health implications of widespread trace metal dissemination.

MOTIVATION

- The toxicological responses of many metals (e.g. Cr, Cu, Mn, Pt, V) are determined by the specific chemical & physical speciation in the emissions.
 - Platinum: soluble, oxidized, halogenated (e.g. chloroplatinic acids) species are 500 fold more toxic than metallic species.
 - **❖ Vanadium**: pentoxide V(V) species exhibits much greater toxicity than the lower oxidation state species.
- Problem and Challenge:
 - Extant modern methodologies provide little relevant speciation information.
 - Traditional techniques that are speciation capable lack the required sensitivity, particularly in the context of lower emissions from vehicles equipped with modern control devices.

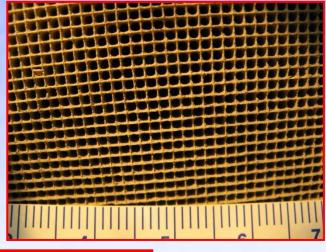
Engine Exhaust PM Characterization

- **□** Elemental & Isotopic Characterization
 - Magnetic sector (high resolution) ICP-MS
 - Sensitivity and Interference Isolation
- Chemical & Physical Speciation of PM
 - Solubility
 - Oxidation State
 - Soluble Species:
 - Long-path (100 cm) Spectrophotometry with Characteristic Ligand e.g. Fe(II)/Fe(III), Mn(II)/Mn(>III), Cr(III)/Cr(VI)
 - > Immobilized Ligand Selective Extraction and Elution
 - Direct Solids:
 - Synchrotron X-ray Absorption Spectroscopy
 - Colloid Charge: Ion Chromatography (DEAE, SAX micro-columns) → ICP-MS
 - Colloid Size: Ultrafiltration (10, 100 kDa) → ICP-MS

Speciation Background

Platinum

- Oxidation States (0, II, IV). Group 8 transition metal.
- Higher oxidation states may be more soluble.
- Chloroplatinic/um salts (H, NH₄, K, Na) are very soluble.

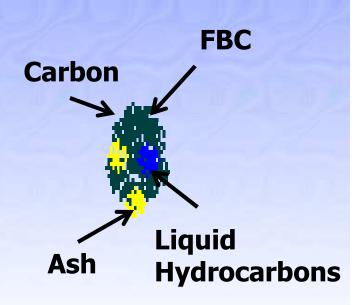

Vanadium

- [Ar] 3d³ 4s². Forms oxyanions. Amphoteric. Redox Active.
- Oxidation States: (0,II,III,IV,V).
- Higher oxidation states more soluble in water due to hydrolysis.
- V(V): (high pH) VO₄³⁻, HVO₄²⁻, H₂VO₄⁻, H₃VO₄, VO₂⁺ (low pH).
- V(IV): cationic (VO²⁺)

Platinum: Sources and Receptors Under Study

- Three-Way-Catalysts
- □ Size-Resolved PM from Engines burning Platinum-
 - **Amended Diesel Fuel**
- **□** PM from Platinum-Catalyzed DPF
- Roadside Dust / Soils

25 mm PCIS Substrate



Gasoline Engine Catalytic Converter

What is a Fuel-Borne Catalyst?

- Catalyst dosed directly into diesel fuel
 - Pt / Ce fuel-soluble bimetallic catalyst
 - delivered in situ
- Active in high temperature combustion zone
 - higher efficiency of fuel HC combustion
- FBC intimate contact with PM
 - more complete combustion of solid C, HC
 - uniformly distributed across PM size range
 - no increase in ultra-fines
- Delivers Catalyst to DOC / DPF
 - fresh catalyst surface replenishment
 - same active forms
 - permits lower lifetime use of Pt

Platinum: Analytical Speciation of Engine PM

Solid Phase

- Total: microwave/acid digestion HR-ICP-MS
- Oxidation State: Synchrotron XAS

Extractable Species

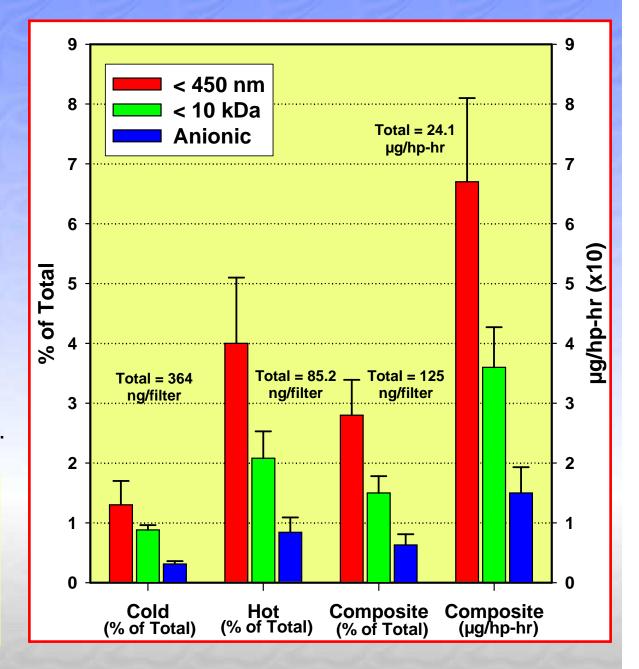
- Primarily oxidized and halogenated species
- Total "soluble" HR-ICP-MS
 - * Water
 - * Methanol
 - **❖** DCM
- Ultra-filtration: colloidal versus "dissolved"
- Ion Chromatography: anionic versus cationic
- HPLC-IC-HR-ICP-MS: specific chemical species

Particle Size Distribution

Sioutas PCIS (5 size-cuts)

Analytical Challenge: <1 ng extractable platinum (10-30 pg in specific fractions).

Speciated Water Soluble Platinum in Diesel PM

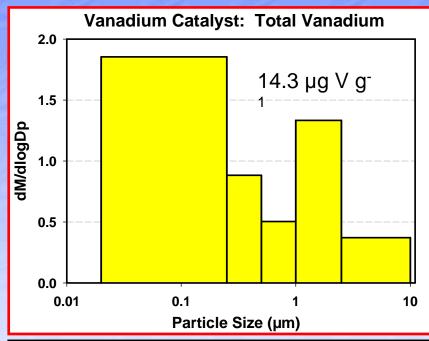

FTP Cycle Means

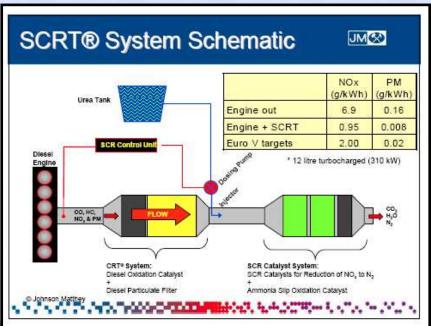
Extractable fraction = < 3%.

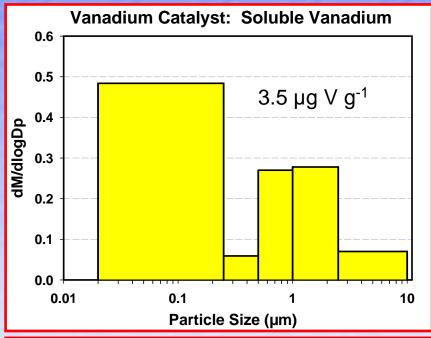
Large colloidal fraction (44% of extractable species).

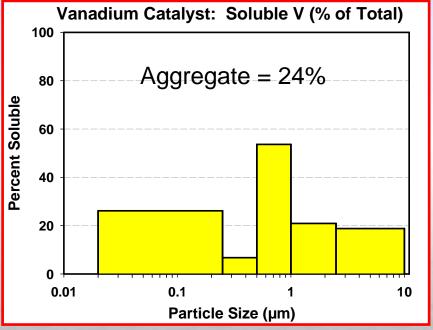
Dissolved (<10 kDa) species exhibit significant anionic character on DEAE (42%).

Shafer, M.M., J.J. Schauer, W. Copan, J. Peter-Hoblyn, B. Sprague, and J. Valentine. 2007. Investigation of platinum and cerium from use of a fuel-based catalyst. *SAE 2006 Transactions Journal of Fuels and Lubricants* – 2006-1-1517:491-503.




Vanadium: Analytical Speciation of Engine PM and Urban Aerosol


- Solid Phase
 - Total: microwave/acid digestion HR-ICP-MS
 - Oxidation State: Synchrotron XAS
- Extractable Species
 - Primarily V(V) and V(IV)
 - Total water and acetate soluble: HR-ICP-MS
 - [V(II), V(III)] V(IV), V(V): Immobilized ligand speciation
- Particle Size Distribution
 - Sioutas PCIS (5 size-cuts)


Significant Analytical Challenge: 0.2-2 ng total vanadium from Dyno Trials for speciation studies.

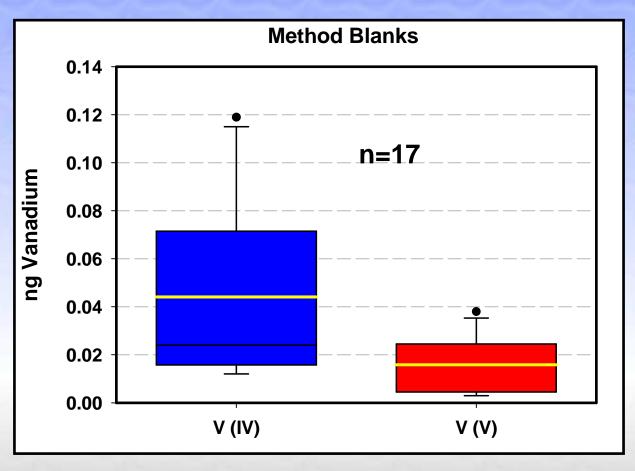
Vanadium Oxidation State Speciation with Chelex

Chelex: cation exchanger at higher pH, anion exchanger at lower pH. In pH range of 4 to 7.4 both cations and anions are adsorbed.

Preparation & Extraction

- Micro-columns of Chelex (immobilized iminodiacetate)
 - 0.2 g of perchloric acid cleaned and acetate buffered (pH=4.5) resin
- Samples extracted in 2 mM sodium acetate buffer
 - 1.5 mL nitrogen purged buffer in purged cryo-vial
 - 60 minutes with defined agitation (under nitrogen canopy)

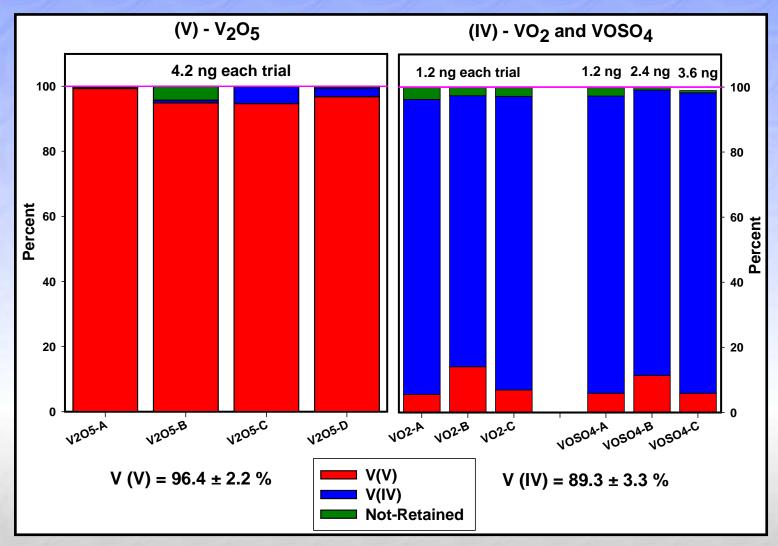
Separation – Speciation


- 1.0 mL of sample loaded onto column
- Process through column at 1.0 mL per minute collect fraction
- Elute column with 4 x 1 mL of 0.1 M ammonium hydroxide collect fraction = V(V).
- Elute column with 2 x 1 mL of 0.2 M perchloric acid collect fraction = V(IV)

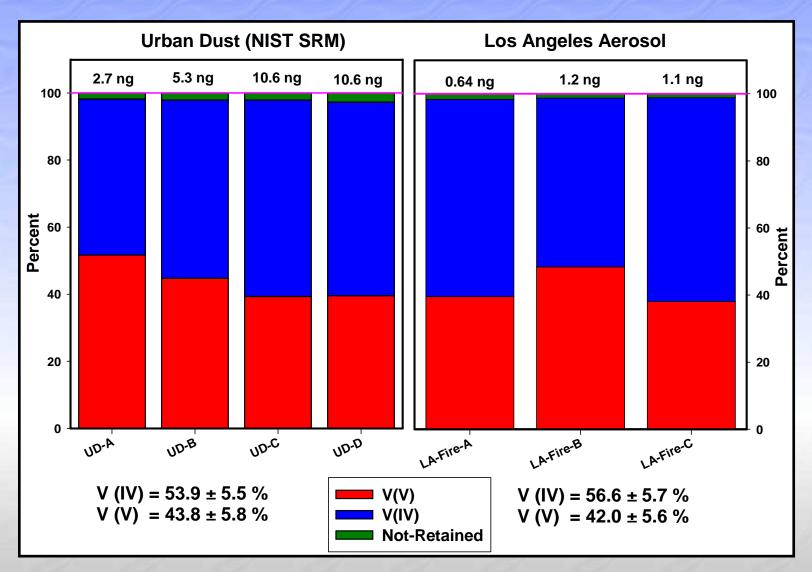
Vanadium Quantification

- Magnetic Sector ICP-MS in medium resolution with on-line standard addition
- ❖ 10,000 cps/ppb V. Background = ~2 cps (0.2 ng L⁻¹). 1-5% RSD.

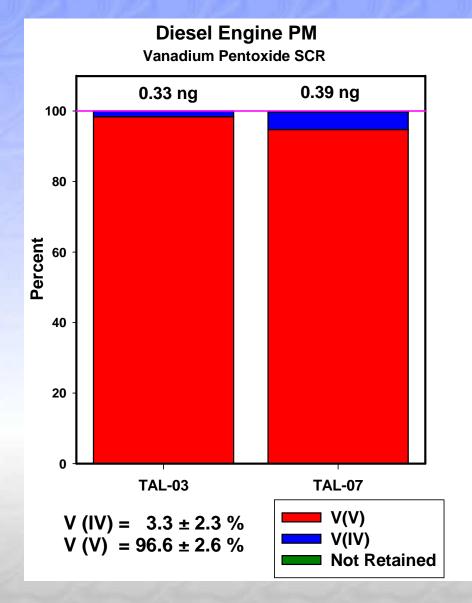
Vanadium Oxidation State Speciation with Chelex


(IV) DL=0.11 ng (0.44 ppm)

(V) DL=0.03 ng (0.14 ppm)

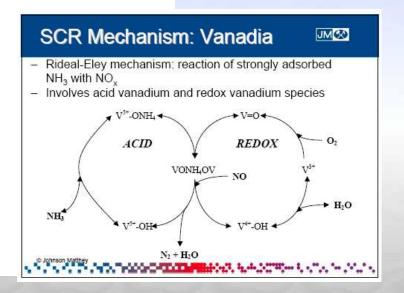

 $0.044 \pm 0.037 \text{ ng}$

 $0.016 \pm 0.011 \text{ ng}$


Vanadium Speciation – Defined Standards

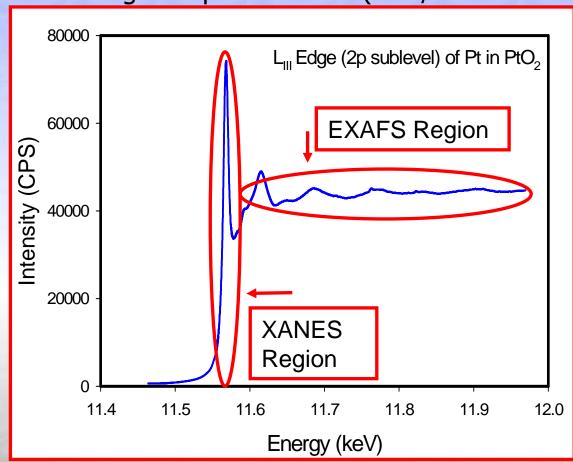
Vanadium Speciation – Environmental Matrices

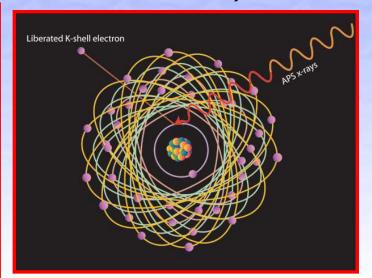
Vanadium Speciation – Engine Exhaust PM


ADVANCES

1.Micro-scale

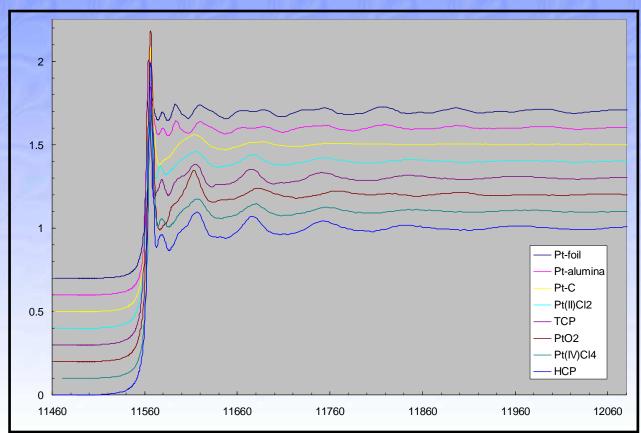
2.DLs improved by


10-50x


3.Coupling to HR-ICP-MS

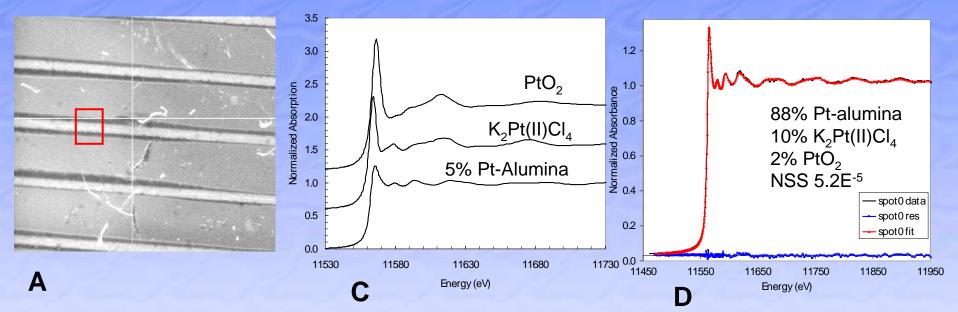
Synchrotron X-Ray Absorption Spectroscopy

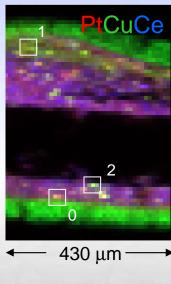
- Direct Solids Analysis complementary to solution phase tools.
- XANES (oxidation state) and/or EXAFS (nearest neighbor chemical bonding environment). XRD – (characteristic diffraction)
- Range of spatial scales (with/without micro-focused beamline).



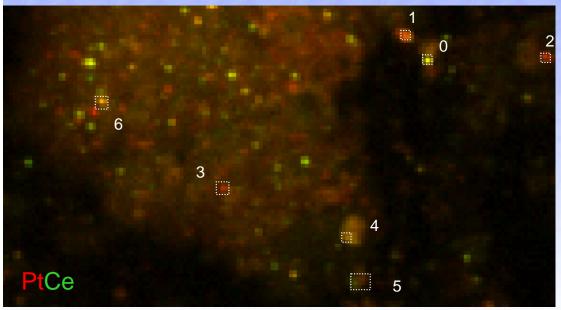
Majestic, B.J., J.J. Schauer, M.M. Shafer. 2007. Application of Synchrotron Radiation for Measurement of Iron Red-Ox Speciation in Atmospherically Processed Aerosols. Atmospheric Chemistry and Physics 7:2475-2487.

EXAFS Spectra of Platinum Reference Materials


LBL-Advanced Light Source



Pt-foil = platinum foil; Pt-alumina = 5% platinum on alumina; Pt-C = 5% platinum on graphite; Pt(II)Cl2 = platinum(II) chloride; TCP = potassium platinum(II) tetrachloroplatinate; PtO2 = platinum(IV) oxide; Pt(IV)Cl4 = platinum(IV) chloride; HCP = potassium platinum(IV) hexachloroplatinate


B

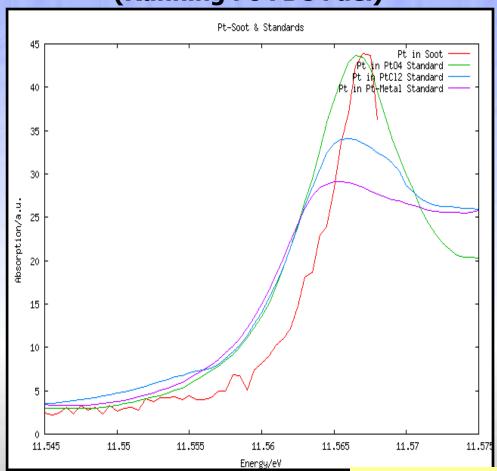
- Pt speciation was studied in a 4 year old 3-way automobile catalyst. A 30 μ m thick, quartz slide mounted, longitudinal section of the center of the catalyst was prepared.
- (A) Light microscope image; outlined area was examined with XRF mapping.
- (B) Red (Pt) green (Cu) blue (Ce) XRF-derived tricolor map. Pt L3-edge extended-XANES spectra were collected at spots 0-2.
- (C) The e-XANES spectra (11,466-12,077 eV) were fit with reference spectra Pt foil, 5% Pt in alumina matrix, 5 % Pt in carbon matrix, Pt(II)Cl₂, Pt(IV)Cl₄, PtO₂, K₂Pt(IV)Cl₆·H₂0, and K₂Pt(II)Cl₄ by linear least squares method
- (D) Select reference spectra and an example fit shown in C and D).

Modeled fraction of oxidized Pt is significant.

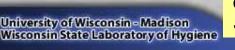
XRF Map, and Extended-XANES Fitting Results, of Diesel Exhaust Particulates Trapped on a Diesel Particulate Filter (engine running a Pt-FBC)

X-ray Fluorescence Map

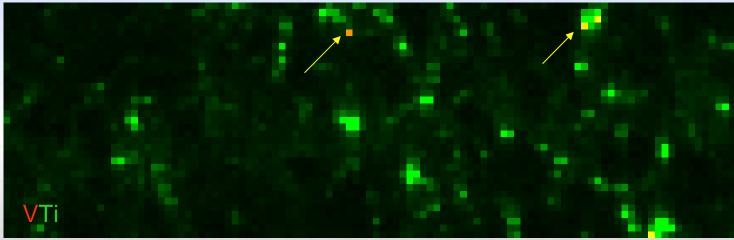
Large heterogeneities in particle composition are observed with many particles exhibiting a significant oxidized platinum component.


Spot #	Elemental Composition	Linear Least-Squares Fit Results
0	Ce, Zn, S	88% Pt-alumina, 7% Pt-foil, 5% TCP
1	Ce	56% Pt-alumina, 21% Pt-C, 24% PtO ₂
2	Fe-rich	87% Pt-alumina, 10% PtO2, 3% HCP
3	Pt alone	81% Pt-alumina, 18% PtO2, 2% TCP
4	Ca, S	59% Pt-foil, 41% PtO ₂
5	S-rich	86% Pt-C, 11% TCP, 7% Pt-alumina
6	Се	86% Pt-alumina, 14% PtO ₂ , 3% HCP
7	Pt-rich	100% Pt-foil
8	Ce, Pt-rich	64% Pt-alumina, 11% PtO ₂ , 26% Pt-foil
9	Ce-rich	36% Pt-foil, 7% HCP, 59% Pt-C

Strong evidence for PtO_2 (14-25% in many spots, up to 40% when associated with Ca and S), and less compelling evidence for presence of chloroplatinates.

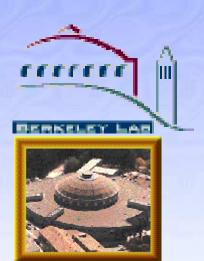

Platinum bulk-XANES

XAS Spectra of Platinum Standards and Diesel Engine Exhaust PM (Running Pt-FBC Fuel)



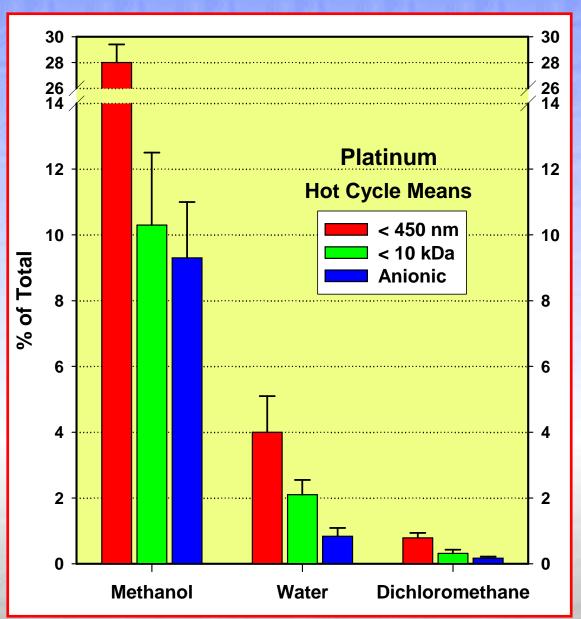
Shafer, M.M., J.J. Schauer, W. Copan, J. Peter-Hoblyn, B. Sprague, and J. Valentine. 2007. Investigation of platinum and cerium from use of a fuel-based catalyst. *SAE 2006 Transactions Journal of Fuels and Lubricants* – 2006-1-1517:491-503.

XRF Maps of Diesel Exhaust Particulates Impacted on Teflon PCIS Subsrates (engine running with a vanadium SCR)



Strong evidence of V, Ti -rich particles in engine PM

Acknowledgments



Comparison of Water & Solvent – Speciated Platinum Emissions

- ■Significantly more Pt extracted with MeOH (28 ± 1.4%) than with DCM (0.79 ± 0.15%) or water.
- DCM should not extract ionic Pt species (except via physical process).
- □DCM more selective in isolating any Pt associated with organic matter.
- ■Methanol (MeOH) extracts and disperses both polar and non-polar species. Breaks up diesel PM soot matrix. High MeOH extractables fraction does not indicate the presence of a large pool of organo-Pt species.

